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Abstract. A relation between the shape of Eden clusters and the number of perimeter sites 
per unit area of the surface is derived which is analogous to the Wulff construction of 
equilibrium shapes in thermodynamic systems. New data are presented for the surface 
width and the surface skewness of Eden clusters grown on a square lattice. The width 
depends on the average orientation of the surface with respect to the underlying lattice. 
Its corrections to scaling are discussed. The skewness has unexpected changes of sign. 

1. Introduction 

Several models simulating on a lattice the growth of a cluster by random aggregation 
of particles produce anisotropic structures reflecting the underlying lattice symmetry. 
This has recetly been observed, e.g. for diffusion-limited aggregation (DLA)  [ l ]  and 
for the Eden model [2,3] on square and simple cubic lattices, which count as prototypes 
among the growth models (for a review see [4]). In both cases the diameter measured 
in Euclidean metric on the square lattice and averaged over many independent clusters 
of equal size is larger along the lattice axes than along the lattice diagonals. However, 
whereas for DLA they differ by at least 30% the anisotropy is much weaker for Eden 
clusters on a square lattice, namely about 2% only. Thus the sensitivity with respect 
to the lattice structure depends on the growth rule. 

The growth rule investigated in this paper is Eden model A in the classification of 
[5]. At every time step a new particle is put on a randomly chosen perimeter site 
(empty nearest neighbour of an already occupied site in the cluster). The shape 
anisotropy was observed in [ 13 and [2] for clusters grown out of a point seed. However, 
in many respects Eden clusters grown on a flat substrate [5] with well defined orientation 
with respect to the lattice allow a more systematic investigation of the anisotropic 
growth properties. The use of a substrate instead of a point seed is natural in the Eden 
model as the clusters are compact, i.e. there remain no holes deep in the interior of 
the cluster [6]. 

The purpose of this paper is twofold. Firstly in 0 2 a formula will be derived which 
connects the shape of an Eden cluster grown out of a point seed with a surface property 
measured for clusters grown on a flat substrate, namely the orientational dependence 
of the number N ,  of perimeter sites per Euclidean unit length L of the substrate [3]. 
This quantity can be shown to have the meaning of a growth velocity. The formula 
is similar to the Wulff construction of equilibrium shapes of crystals [7,8] from the 
orientational dependence of the surface tension. 
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Secondly, new data are presented in 5 3 concerning the perimeter site distribution. 
They were obtained in a computer simulation of Eden clusters grown on flat substrates 
with four different orientations WRT the square lattice, namely parallel to a lattice axis 
(Miller indices (O,l)), parallel to a lattice diagonal (Miller indices (1 , l ) )  and at 
angles tan-’ l / n  with a lattice axis (Miller indices (1, n)) for n = 2 and 4. Two 
quantities have been investigated; the width of the surface region 

w = ( ( r  -(r))2)1’2 (1.1) 

s = ( ( r - ( r ) ) 3 ) / w 3  (1.2) 

and  the surface skewness 

where r is the Euclidean distance of a perimeter site from the substrate. The angular 
brackets indicate averaging over all perimeter sites. Both quantities w and s were 
averaged over a large number of clusters of equal size. For a symmetric probability 
distribution of the distances r the skewness would be zero. To my knowledge this 
quantity has not been investigated systematically for Eden cluster surfaces before. 

A substrate with Miller indices ( 1 , n )  has plateaux of width n parallel to the x axis 
of the lattice. These are separated by steps of height one in the y direction. The cluster 
is then grown in an  infinite strip in y direction, the width X of which (measured 
parallel to the x axis) is a multiple of the plateau width n. Along the edges of this 
strip periodic boundary conditions are imposed so that sites on opposite edges are 
identified which have equal distance from the substrate. This can be handled most 
conveniently if the Miller indices are not exactly ( 1 , n )  = ( X / n , X )  but ( X / n  - 1 , X ) .  
The error one makes is very small for X >> n. Therefore I shall not distinguish in the 
following which data have been obtained with the exact or with the approximate Miller 
indices. For Miller indices (1,n) the substrate length L is related to X by 

L = X (  1 + n2)’’2/n. (1.3) 
Finally in § 4 the results will be summarised. 

2. Wulff construction for Eden clusters 

In this paper the shape of Eden clusters is understood in an  average sense. Consider 
a large number of clusters of equal size grown from a point seed at the origin of the 
coordinate system. For every lattice cell we average the occupation number (0 if the 
cell is empty, 1 if it belongs to the cluster) over all clusters. This gives a density 
function d ( r , t ) ,  where the time of growth t corresponds to the cluster size. For the 
moment let us define the position of the surface, r ( p ,  t ) ,  as a contour of constant 
density close to the maximum gradient, with a parametrisation p .  

Suppose that Eden clusters develop a stationary shape evolving in time just through 
a scaling of the linear dimension. Then one can choose the parametrisation such that 

r ( p ,  t ) = P ( t ) r o ( p )  (2.1) 
with a normalised shape r , , (p) .  For the normal growth velocity this implies 

u ( p ,  r ) = ( d r / d r ) . n =  a ( t ) u o ( p )  

a(  t )  = d r (  r)/dr 

where n = n( p )  is the surface normal and 6 and uo are given by 

u o ( p ) =  r o ( p ) . n ( p ) .  
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Neglecting curvature corrections we assume that the growth velocity is determined 
by the orientation of the surface, i.e. uo depends on p only through n. This orientational 
dependence of the growth velocity causes the shape of the Eden clusters to be 
anisotropic. How the growth velocity determines the shape was first described by 
Wulff [7] for the case of faceted crystals. His construction can be generalised to the 
present case. 

In a first step I show that the shape of Eden clusters has to be convex under the 
above conditions. The normal growth velocity is always positive because occupied 
sites remain occupied for ever. It follows then from stationarity (2.3) that the region 
enclosed by ro( p )  has to be starlike. Every point on the curve ro( p )  can be connected 
with the origin by a straight line lying entirely in the enclosed region. Hence we can 
choose the polar angle cp as parameter p .  Denoting the normal direction by 6 (figure 
1) (2.3) becomes 

u0(6(cp)) = ro(cp) cos(cp - 6(cp)). (2.4) 

An elementary geometrical consideration shows that the normal direction is given by 

tan(cp - 6(cp)) = rb(cp)/ro(cp). (2.5) 

O=[tan(cp -6)-u~(6)/uo(6)]6'(cp).  (2.6) 

tan(cp - 6 )  = U;( 6)/uo( 6 ) .  (2.7) 
Because (2.3) is positive (cp - 6 )  lies between - 7 / 2  and ~ / 2 ,  so that (2.7) can uniquely 
be solved for cp. This means that the average shape of Eden clusters is convex, as there 
exists only one polar angle for which the normal points in a given direction. 

Inserting the cp derivative of (2.4) in (2.5) one obtains 

Therefore the surface is either planar (a'( cp) = 0) or 

Using this result one can now write (2.4) in the form 

uo( 6 )  = max [ro(cp) cos(cp - S ) ] .  (2.8) 
'p 

The maximum condition specifies the polar angle cp under which the vector normal to 
the surface has a diirection given by the angle 6. It follows from convexity (see figure 
1). As the tangent at cp has to lie entirely outside the cluster one concludes that 

ro( 4) cos( 4 - 6 )  ro( cp( 6 ) )  cos( cp( 6 )  - 6 )  VG. 

Figure 1 .  Illustration of the geometrical considerations described in the text to derive the 
Wulff construction for Eden clusters. 
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If the orientational dependence U,,( 9 )  of the growth velocity is known one can now 
calculate the shape ro(cp) by inverting (2.8): 

(2.9) 

This is completely analogous to the Wulff construction of equilibrium shapes of, for 
example, Ising domains [SI or crystals [7] where the orientational dependence of the 
surface tension replaces that of the growth velocity. 

One can think of other definitions of the average position of the surface of Eden 
clusters. In order to make sense they may differ from (2.1) only by order of magnitude 
of the surface width. Since the width scales with the linear dimension P ( t )  as Pp with 
p - f [9] the surface region becomes arbitrarily narrow on the scale P( 1 )  in the limit 
t + CO. Thus all these definitions lead to the same normalised shape ro(cp). 

For practical purposes one might prefer a definition such as the following. For 
every cluster, determine the mean distance from the seed of all perimeter sites within 
a small solid angle. Average this distance over many clusters of equal size to get 
r(cp, t). However, from a conceptual point of view it is simpler to define a Gibbs 
surface [lo] in the following way: for a small solid angle around a certain direction 
the true density profile through the surface is replaced by a step function such that 
the average number of occupied cells within the solid angle remains the same. 

It can easily be verified that a surface element of the Gibbs surface propagates 
with a normal velocity which is equal to the average number of perimeter sites per 
unit length. At every time step all perimeter sites have equal probability to become 
occupied. Therefore the deposition rate in a certain direction is equal to the average 
number of perimeter sites SN, in a small solid angle Scp around this direction. Thus 
the mass deposited in Scp within a given time interval d t  is equal to SN, dt, where the 
timescale has been chosen such that in unit time a cluster grows by addition of a 
number of sites equal to the average total number of perimeter sites. The distance of 
the surface from the seed thereby increases by d r  = SN, dt / (  r Scp) .  Hence the normal 
growth velocity (2.2) is asymptotically equal to the number of perimeter sites per unit 
length of the Gibbs surface 

v = (dr/dt)e;n = SN,/SL (2.10) 

where SL = rScp/e,-n is the length of the surface within the solid angle Scp, which must 
be small enough that one can neglect the curvature of the surface. e, is the radial unit 
vector. 

The normal growth velocity can be measured for Eden clusters grown on flat 
substrates. In this case the Gibbs surface is parallel to the substrate and both have 
the same length. The normal growth velocity differs from the number of perimeter 
sites per unit length of the substrate only by curvature corrections which can be 
neglected for large clusters. It has been shown [3] that N,/ L depends on the orientation 
of the substrate with respect to the underlying square lattice. 

Now we can compare the shape anisotropy observed in [2] and the orientational 
dependence of the normal growth velocity reported in [3]. Notice that figure 2 of [2] 
was obtained by subtracting a constant from every distance of a perimeter site from 
the seed in order to exaggerate the small anisotropy. Actually the difference between 
the axial and diagonal diameters was about 2% which is in good agreement with the 
difference between the growth velocities given in [3]. For symmetry reasons n 
has to be parallel to e, in these directions (i.e. cp = 9) so that, according to (2.9), the 
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ratio between the axial and diagonal diameters is equal to the ratio between N , / L  for 
substrates parallel to an axis and to a diagonal. These growth velocities are 2.180 and 
2.137, respectively, with errors k0.007. 

3. Surface width and skewness 

In  order to get a clearer picture about the orientational dependence of perimeter 
properties in Eden clusters, width and skewness of the perimeter site distribution have 
been measured in a computer simulation on a CDC Cyber 176. Using single bit 
handling, and storing only the surface region of a cluster, substrate lengths up to 20 010 
were studied. The cluster size is only limited by the computation time but not by 
memory. The largest clusters contained more than 100 million sites. Intermediate 
stages of every cluster were evaluated to get data about the time evolution. All results 
were averaged over a number of independent clusters which varies between 1000 for 
L =  100, 100 for L =  1000 and 50 for L=20000. The program took about 13 ps per 
site for the orientations (0,l) and (1,l) and about 15 ps per site for the other orientations. 

The width is assumed to scale like [5,9] 

w = L’I2f( h /  L2) (3.1) 

where h = N / L  is the distance of the Gibbs surface from the substrate (called the 
deposit height). Values for z reported in the literature are close to $ [ 11, 5,9]. Plotting 
w/L‘12 against h/L3I2  I found a rough collapse of the data for L between 90 and 
20 010. The width increases monotonically until it reaches a stationary value around 
h =0.4 L312. A more detailed analysis of the time evolution of w has been given in 
[3], where also the strong corrections to scaling are discussed which make it extremely 
difficult to determine z for Eden model A. The stationary values of w /  L”’ are plotted 
in figure 2 for different substrate lengths and substrate orientations. 

According to (3.1) the asymptotic values of w/L”’ should not depend on L. 
However, figure 2 shows that there are strong corrections to scaling below L = 500. In 
this connection it is worth mentioning that for small L the surface width reaches its 
stationary value before the perimeter to length ratio N , / L  does, whereas for large L 

-0.7 

- -0.8 * 
2 - -0.9 

-1.0 

-1.1 

I 1 1 

100 200 400 800 1600 
L 

Figure 2. Stationary values of the surface width w scaled by the square root of the substrate 
length L for Miller indices (0, l ) ,  0; (1,4), W; ( 1 , 2 ) ,  A; ( 1 ,  I ) ,  *. 
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it is the other way around. The time evolution of N p / L  is given by 

NpI L = g ( h ) (3.2) 

and the deposit height h - 2000 where N p /  L reaches its stationary value does not 
depend on L in contrast to (3.1) [3]. The crossover between the two L regimes happens 
around L = 300 which follows from 2000 = 0.4 L3’2. Of course, to attempt an explana- 
tion of the corrections to scaling for w by some interaction between the relaxation 
processes for N p / L  and w is highly speculative but might inspire further work. In 
this respect a comparison with Eden models B and C where some corrections to scaling 
are less pronounced [ 5 ]  could be very instructive. 

Figure 2 clearly shows the anisotropy of the surface width. It is largest for surfaces 
with an average orientation parallel to a lattice axis and decreases if the surface is 
tilted towards the lattice diagonal. The curves for Miller indices (0 , l )  and (1,l)  are 
parallel within the error bars in the logarithmic plot of figure 2. This is indicated by 
the broken lines which, in the horizontal part, are the weighted average of all the data 
for L > 490. It means that the ratio of the stationary values of the surface width for 
Miller indices (0,l)  and (1 , l )  at the same substrate length L is practically independent 
of L. This ratio as well as those for the other orientations have been determined for 
small L where the data are most accurate. Within the error bars they are the same for 
all substrate lengths considered. Using this observation the values of w /  L”’ for large 
L where the corrections to scaling can be neglected are 0.423, 0.416, 0.405 and 0.388 
with errors k0.006 for Miller indices (0, l ) ,  (1,4), (1,2) and (1 ,  l ) ,  respectively. The 
anisotropy is stronger than for N p / L :  the difference between w/L‘ / ’  for ( 0 , l )  and 
( 1 ,  1 )  is about 9% whereas for N p / L  it is about 2% [3]. 

The surface skewness ( ( r - ( ~ - ) ) ~ ) /  w3 plotted in figure 3 for Miller indices ( 0 , l )  
shows a very surprising behaviour as a function of both the substrate length L and 
the deposit height h. One can understand that it is positive for small h as the perimeter 
site distribution is truncated by the substrate. That it becomes negative as h increases 
may.be due to the fact that the Eden growth rule allows isolated holes in the cluster 
but no isolated ‘islands’ outside, so that one expects that the perimeter site distribution 
has a longer tail inside the cluster than outside. However, surprisingly for sufficiently 

a 
a 

A *  a 
~~ 

~p~ 

A . ‘I 
0 - p - p  

I 
1- A 

4 

A * e * +  
I 

I I I 

I ’  I I I f ;  I 

A 

i 0 1  

. I  

Figure 3. Surface skewness s as function of the deposit height h for Miller indices (0, 1) 
and substrate lengths L=8010 (U), 1005 (O), 495 (A) and 120 (e). 
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large L the skewness changes sign again, goes through a maximum and maybe oscillates 
for larger h. The L dependence is very strong. The larger L, the higher is the maximum 
of s after the second change of sign and the more it is shifted to larger h values. I 
refrain from speculating on the asymptotic and scaling behaviour of the surface 
skewness. In particular one has to extend the simulation to larger h values than I did 
if one wants to investigate its stationary values. 

In figure 4 the surface skewness is plotted for Miller indices (1, 1 ) .  It shows the 
same features as a function of L and h as for Miller indices (0, 1). No appreciable 
anisotropy can be observed for the skewness if one compares the data for Miller indices 
( 0 , l )  and L = 495, L = 1005 with those for Miller indices ( 1 , l )  and L = 508, L = 989. 
The skewness seems to be slightly smaller for Miller indices ( 1 ,  1 )  than for (0, 1 )  but 
more data are needed to make a quantitative analysis. Notice however that s is 
normalised by the surface width which is different in figures 3 and 4 due to the 
anisotropy. 

- 
I 1 I I I 1 I _  

I I I I I 

0 

-0.1 

-0 r 2 

A 

' 1  

h 

Figure 4. Same as figure 3, but for Miller indices ( 1 ,  1) and substrate lengths L = 989 (O) ,  
508 ( A ) ,  276 (e) and 170 (U). 

4. Conclusion 

The main result of this paper is that it is possible to construct the stationary shape of 
two-dimensional Eden clusters from a Wulff plot of the average number of perimeter 
sites per unit length of a macroscopically flat surface in exactly the same way as one 
constructs equilibrium shapes of crystals from a Wulff plot of the surface tension [8]. 
This result can immediately be generalised to higher dimensions where (2.9) is replaced 
by 

where v o ( n )  can be identified with the number of perimeter sites per unit area of the 
Gibbs surface which can be introduced along similar lines as in 0 2. It could be shown 



1258 D E Wolf 

analytically, by estimating the number of ‘histories’ leading to a given cluster, that vo 
depends on n at least in space dimensions d 2 54 [ 121. Numerical evidence for the 
anisotropy of the growth velocity for d = 2 was given in [3]. This suggests that Eden 
clusters may reflect the symmetry of the underlying lattice in all dimensions. 

Not only the growth velocity is anisotropic for two-dimensional Eden clusters but 
also the surface width. Its stationary values in axial and in diagonal direction differ 
by about 9%. The difference in the growth velocities is only 2%.  After completion 
of this work I received a preprint by Meakin et a1 [13] who report similar results for 
version C of the Eden model [5]. In their case the growth velocity and the surface 
width are smaller in the diagonal direction than along the axes by about 2.5% and 
11%, respectively. (Notice that for a comparison the values f i a /a ’  in table 1, [13], 
have to be multiplied by 2”4 in order to get the ratios of width/(substrate length)”’ 
which I have considered in this paper.) 

The surface skewness has a much more complicated behaviour than N P / L  and w. 
As a function of deposit height its behaviour is clearly not monotonic. Instead it 
changes sign several times, depending on the substrate length. More data are needed 
to make a quantitative analysis of its behaviour for large L and h. 
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